
COP 3330: Introduction To Classes Page 1 © Mark Llewellyn

COP 3330: Object-Oriented Programming
Summer 2007

Introduction to Classes – Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2007

COP 3330: Introduction To Classes Page 2 © Mark Llewellyn

A Closer Look At Parameter Passing in Java

• Java uses the pass by value method for parameter passing.

• Whenever a method is invoked, flow of control is
transferred temporarily to that method.

• The actual parameters in the invocation are used to
initialize the formal parameters in the method’s definition.

• For each method invocation, Java sets aside memory,
known as the activation record (for that particular
invocation).

• The activation record stores, among other things, the
values of the formal parameters.

COP 3330: Introduction To Classes Page 3 © Mark Llewellyn

A Closer Look At Parameter Passing in Java
(cont.)

• Once the actual parameters have been used to initialize the
formal parameters, the actual parameters and the formal
parameters are independent of each other.

• If a method updates the value of a formal parameter, the
changes DOES NOT affect the actual parameter. The
change is limited to the activation record containing the
value of the formal parameter.

COP 3330: Introduction To Classes Page 4 © Mark Llewellyn

Another Parameter Passing Example (1)
//Parameter passing example
public class ParaEx {

//add() returns the sum of its parameters
public static double add(double x, double y){

double result = x + y;
return result;

}
//multiply() returns the product of its parameters – it is written only to
// illustrate parameter passing.
public static double multiply(double x, double y){

x = x * y;
return x;

}
//main() application entry point
public static void main(String[] args){

System.out.println();
double a = 8;
double b = 11;
double sum = add(a, b);
System.out.println(a + “ + “ + b + “ = “ + sum + “ Value of a: “

+ a + “ Value of b: “ + b);
double product = multiply(a, b);
System.out.println(a + “ * “ + b + “ = “ + product + “ Value of a:

“ + a + “ Value of b: “ + b);
} }

COP 3330: Introduction To Classes Page 5 © Mark Llewellyn

Another Parameter Passing
Example – Output (1)

COP 3330: Introduction To Classes Page 6 © Mark Llewellyn

Another Parameter Passing Example (cont.)

Step 2:
With the invocation, a new activation record is created for the method add()
and the flow of control is transferred to the add() method. Creation of this
activation record initializes formal parameter x to the value of actual
parameter a and formal parameter y to the value of actual parameter b.

add()

8.0

11.0

-

x

y

result

COP 3330: Introduction To Classes Page 7 © Mark Llewellyn

Another Parameter Passing Example (cont.)

Step 3:
If add() updates the value of its formal parameters, the change is visible
only within add() – the actual parameters are unchanged. The formal
parameters x and y are used to initialize result. After the initialization
of result the activation record for add() looks like the one shown below.

add()

8.0

11.0

19.0

x

y

result

COP 3330: Introduction To Classes Page 8 © Mark Llewellyn

Another Parameter Passing Example (cont.)
Step 4:
Within the add() method the return statement is evaluated. This sets the value of
result to 19.0. The method’s completion causes the memory associated with its
activation record to be released. The flow of control is returned to the main()
method, where the value returned by add() is used to initialize sum. The main()
method activation record now looks like the following:

main()
8.0

11.0

19.0

-

a

b

sum

product

COP 3330: Introduction To Classes Page 9 © Mark Llewellyn

Another Parameter Passing Example (cont.)

Step 5:
The multiply() method is invoked next which causes the flow of control to
pass to this method and the creation of an activation record. The formal
parameters x and y are initialized to the values of a and b respectively.
The activation record for multiply() looks like the following:

multiply()

8.0

11.0

x

y

COP 3330: Introduction To Classes Page 10 © Mark Llewellyn

Another Parameter Passing Example (cont.)

Step 6:
After the assignment in the multiply() method, the activation records for the
main() and multiply() methods are shown below.

multiply()

8.0

11.0

x

y

main()
8.0

11.0

19.0

-

a

b

sum

product

COP 3330: Introduction To Classes Page 11 © Mark Llewellyn

Another Parameter Passing Example (cont.)

Step 6 - Explanation:
Because a formal parameter is essentially a variable local to its method, a
change to a formal parameter does not affect the corresponding actual
parameter.

The assignment of formal parameter x of multiply() did not affect actual
parameter a of main().

Formal parameters are created with the invocation of their method, their
values are accessible only within the method, and they are destroyed when
their method completes.

The only difference between the formal parameters and the other variables
defined by a method is that the formal parameters are initialized using the
values of the actual parameters.

COP 3330: Introduction To Classes Page 12 © Mark Llewellyn

Another Parameter Passing Example (cont.)
Step 7:
Within the multiply() method the return statement is evaluated. This evaluation sets
the value of x to 88.0. The method’s completion causes the memory associated
with its activation record to be released. The flow of control is returned to the
main() method, where the multiply() return value is used to initialize product.
The main() method activation record now looks like the following:

main()
8.0

11.0

19.0

88.0

a

b

sum

product

COP 3330: Introduction To Classes Page 13 © Mark Llewellyn

Another Parameter Passing Example (2)

//Parameter passing example Number 2 for Day 9
import java.awt.*;
public class ParaPassEx2 {

//f() set the value of the formal parameter
public static void f(Point v){

v = new Point(0,0);
}
//g() modify the contents of a referred object
public static void g(Point v){

v.SetLocation(0,0);
}
//main() application entry point
public static void main(String[] args){

Point p = new Point(10,10);
System.out.println(p);
f(p);
System.out.println(p);
g(p);
System.out.println(p);

}
}

COP 3330: Introduction To Classes Page 14 © Mark Llewellyn

Another Parameter Passing
Example – Output (2)

COP 3330: Introduction To Classes Page 15 © Mark Llewellyn

Another Parameter Passing Example (cont.)
Step 1:
Main() method begins by initializing, and displaying a Point variable p.
Variable p references an object referencing the location (10, 10). After
completing this initial segment of main(), the activation record for main() is
shown below. Although variable p is part of the activation record for
main(), the memory for the Point to which it refers is not part of the
activation record. Java divides the memory allocated to a program into two
parts – the stack and the heap. Activation records are maintained in the
stack and space for objects comes from the heap.

main()

p
Point

y: 10 x: 10

COP 3330: Introduction To Classes Page 16 © Mark Llewellyn

Another Parameter Passing Example (cont.)
Step 2:
Method f() is then invoked with p as the actual parameter. The invocation
causes the creation of an activation record and the flow of control is passed
to the method. Main method variable p and formal parameter v of f() have
the same value, which is a reference to an object representing location (10,
10). The activation records now looks like the following:

main()

p
Point

y: 10 x: 10

f()

v

COP 3330: Introduction To Classes Page 17 © Mark Llewellyn

Another Parameter Passing Example (cont.)
Step 3:
Since Java uses value parameter passing, the actual and formal parameters p and v
have the same value, that is, they reference the same Point object. The assignment
statement in method f() is then executed giving formal parameter v a new value,
that is, v now references a new Point object representing the location (0, 0). This
assignment does not modify main() method variable p because variable p has its
own memory where it stores its value.

main()

p

Point

y: 10 x: 10

f()

v

Point

y: 0 x: 0

COP 3330: Introduction To Classes Page 18 © Mark Llewellyn

Another Parameter Passing Example (cont.)

Step 4:
The activation record for f() is then released and flow of control is
transferred back to the main() method where a println statement is executed.
The activation record for main() looks like the following:

main()

p
Point

y: 10 x: 10

COP 3330: Introduction To Classes Page 19 © Mark Llewellyn

Another Parameter Passing Example (cont.)
Step 5:
Method g() is then invoked with p as the actual parameter. The invocation
causes the creation of an activation record and the flow of control is passed
to the method. Main method variable p and formal parameter v of f() have
the same value, which is a reference to an object representing location (10,
10). The activation records now looks like the following:

main()

p
Point

y: 10 x: 10

g()

v

COP 3330: Introduction To Classes Page 20 © Mark Llewellyn

Another Parameter Passing Example (cont.)
Step 6:
Within method g() the Point instance method is invoked (v.setLocation(0,0)). This
invocation causes an update to the Point object to which parameter v references.
The update changes the representation to that of (0, 0). Notice that this update
changed neither actual parameter p nor formal parameter v. However, the object to
which they both refer has been updated and its change is visible through either one
of them. The activation records now look like those shown below:

main()

p
Point

y: 0 x: 0

g()

v

COP 3330: Introduction To Classes Page 21 © Mark Llewellyn

Summary of Parameter Passing in Java

• Java uses the pass by value method for parameter
passing.

• The value of an actual parameter does not change
with method invocation.

• If the actual parameter is a reference, then the
object to which the actual parameter refers can be
modified in a method invocation.

COP 3330: Introduction To Classes Page 22 © Mark Llewellyn

Object Reference this
• The keyword this can be used inside instance methods to

refer to the receiving object of the method.
• The receiving object is the object through which the

method is invoked.
• The object reference this cannot occur inside static

methods.
• Two common usage of this:

– to pass the receiving object as a parameter
– to access fields shadowed by local variables.

• Each instance method runs under an object, and this object
is accessible using the keyword this.

COP 3330: Introduction To Classes Page 23 © Mark Llewellyn

Passing this as a Parameter
public class MyInt {

private int ival;
public MyInt(int val) { ival=val; }
public boolean isGreaterThan(MyInt o2) {

return (ival > o2.ival);
}
public boolean isLessThan(MyInt o2) {

return (o2.isGreaterThan(this));
}

}

Usage in some other place (method)
MyInt x1=new MyInt(5), x2=new MyInt(6);
x1.isGreaterThan(x2); //output false
x1.isLessThan(x2); //output true

COP 3330: Introduction To Classes Page 24 © Mark Llewellyn

Passing this as a Parameter (cont.)
Variable bindings just after entering isGreaterThan method of x1

x1

: MyInt (5) : MyInt (6)

x2

o2

x1.ival is compared to x2.ival, since 5 is not greater than 6, false is returned

COP 3330: Introduction To Classes Page 25 © Mark Llewellyn

Passing this as a Parameter (cont.)
Variable bindings just after entering isLessThan method of x1

x1

this

: MyInt (5) : MyInt (6)

x2

o2

x1.isLessThan(x2) sets o2 = x2 and then calls o2.isGreaterThan(this)

this refers to the object on which the method invocation occurred
which is x1. So the invocation is: o2.isGreaterThan(x1). On this
invocation the formal parameter o2 becomes x1and what is returned is
the result of the comparison of x2.ival > x1.ival (6 > 5) which is true.

COP 3330: Introduction To Classes Page 26 © Mark Llewellyn

Accessing Shadowed Fields
• A field declared in a class can be shadowed (hidden) in a method by

a parameter or a local variable of the same name.
public class T {
int x; // an instance variable
void m1(int x) { ... } // x is shadowed by a parameter

void m2() { int x; ... } // x is shadowed by a local variable

• To access a shadowed instance variable, we may use this
keyword.

public class T {
int x; // an instance variable
void changeX(int x) { this.x = x; }

}

COP 3330: Introduction To Classes Page 27 © Mark Llewellyn

A Closer Look At this As Well As Some of That

• The following few pages present another big Java example
that will help illustrate the use of the keyword this along
with several other features of Java that we have already
seen as well as a few that we will be seeing in more detail
in the near future.

• These new features that are included in the following
example include inherited methods and overriding
methods.

• We’ll also introduce the concepts of facilitators, mutators,
and accessors.

COP 3330: Introduction To Classes Page 28 © Mark Llewellyn

//Developer: Mark Llewellyn Date: June 2007
//Illustrate this and other Java features – creates a 3-tuple
public class Triple{

//instance variables for the three attributes of the 3-tuple
private int x1; //first value
private int x2; //second value
private int x3; //third value

//Triple() – default constructor
public Triple(){

this(0, 0, 0);
]

//Triple() – specific constructor
public Triple(int a, int b, int c) {

setValue(1, a);
setValue(2, b);
setValue(3, c);

}

COP 3330: Introduction To Classes Page 29 © Mark Llewellyn

//getValue() – attribute accessor method
public int getValue(int i) {

switch (i) {
case 1: return x1;
case 2: return x2;
case 3: return x3;
default:

System.err.println(“Triple: bad get: “ + i);
System.exit(i);
return(i);

}//end switch
}

//setValue() – attribute mutator
public void setValue(int i, int value) {

switch (i) {
case 1: x1 = value; return;
case 2: x2 = value; return;
case 3: x3 = value; return;
default:

System.err.println(“Triple: bad set: “ + i);
System.exit(i);
return(i);

}//end switch
}

COP 3330: Introduction To Classes Page 30 © Mark Llewellyn

//toString() – string representation facilitator

public String toString() {
int a = getValue(1);

int b = getValue(2);
int c = getValue(3);
return “Triple[“ + a + “, “ + b + “, “ + c + “]”;

}

//clone() – duplicate facilitator
public Object clone() {

int a = getValue(1);

int b = getValue(2);
int c = getValue(3);

return new Triple(a, b, c);
}

COP 3330: Introduction To Classes Page 31 © Mark Llewellyn

//equals() – equal facilitator
public boolean equals(Object v) {

if (v instanceof Triple) {
int a1 = getValue(1);
int b1 = getValue(2);
int c1 = getValue(3);

Triple t = (Triple) v;
int a2 = t.getValue(1);
int b2 = t.getValue(2);
int c2 = t.getValue(3);

return (a1 == a2) && (b1 == b2) && (c1 == c2);
}
else {

return false;
}

}
}//end class

COP 3330: Introduction To Classes Page 32 © Mark Llewellyn

Explanations For Triple Class

• Notice that there are two constructors for the Triple
class. One takes 0 parameters and the other takes 3 integer
parameters.

• The constructor requiring 0 parameters is called the default
constructor. The default constructor uses the
specific constructor (the one requiring 3 parameters) to
initialize a new Triple object.

public Triple(){
this(0, 0, 0);}

The new Triple object (the this object) is constructed by
invoking the Triple constructor expecting three integer values
as actual parameters.

COP 3330: Introduction To Classes Page 33 © Mark Llewellyn

Explanations For Triple Class (cont.)

• Keyword this is a reference to the object being acted
upon. It provides a notation for an object to refer to itself.

• In a constructor, this references the object under
construction. (This is the case in our example.)

• In an instance method, this references the object being
manipulated.

• The use of this in the Triple default constructor
signifies that the object under construction is to be
configured with zeros for its attribute values. The
configuration is performed by invoking the Triple
constructor whose signature matches the invocation, i.e.,
the Triple specific constructor expecting three integer
values as parameters.

COP 3330: Introduction To Classes Page 34 © Mark Llewellyn

Explanations For Triple Class (cont.)
• This is a very common type of construction used to define

constructors in Java. Typically, one constructor has a detailed
initialization process. The other constructors then use that
definition by invoking it with the appropriate values.

• By using that single detailed initialization process, it is less
likely that some aspect of object configuration will be omitted.

• NOTE: If another constructor of the class assists the
initialization, Java requires that the this() invocation be at the
beginning of the statement body. The following constructor
definition would be illegal:

public Triple() {
int a = 0;
int b = 0;
int c = 0;
this(a, b, c);

}

COP 3330: Introduction To Classes Page 35 © Mark Llewellyn

Explanations For Triple Class (cont.)

• The Triple specific constructor uses its three actual
parameters to initialize the attributes of the Triple object
under construction. It does so through the use of the
Triple mutators.

//Triple() – specific constructor
public Triple(int a, int b, int c) {

setValue(1, a);
setValue(2, b);
setValue(3, c);

}

COP 3330: Introduction To Classes Page 36 © Mark Llewellyn

Explanations For Triple Class (cont.)

• The Triple specific constructor could have used explicit
this references to indicate that it is the object under
construction whose setValues() mutators are being
invoked.

//Triple() – specific constructor
public Triple(int a, int b, int c) {

this.setValue(1, a);
this.setValue(2, b);
this.setValue(3, c);

}

• However, in practice Java programmers will tend generally
to omit explicit this references. It is understood
implicitly that the methods being invoked are acting upon
the object under consideration.

COP 3330: Introduction To Classes Page 37 © Mark Llewellyn

Inherited Methods and Overriding -
Explanations For Triple Class (cont.)

• Every Java class (like the class Triple in this example) is
automatically an extension of the standard class Object.

• The Object class specifies some basic behaviors common to all
objects.

• One of the methods that Triple inherits from Object is the method
toString().

• It is generally recommended that every class override the
toString() definition provided by Object (i.e., provide a
different implementation.)
– By doing so, System.out.println() can display a meaningful

representation of all of the attributes of the object rather than just its
Object attributes.

– System.out.println(p); //display a string version of object p.

– This can be most helpful when debugging a program.

COP 3330: Introduction To Classes Page 38 © Mark Llewellyn

Inherited Methods and Overriding -
Explanations For Triple Class (cont.)

• For the Triple class in this example, a reasonable string
representation would be a listing of its three attributes.

//toString() – string representation facilitator
public String toString() {

int a = getValue(1);
int b = getValue(2);
int c = getValue(3);
return “Triple[“ + a + “, “ + b + “, “ + c “]”;

}

COP 3330: Introduction To Classes Page 39 © Mark Llewellyn

Inherited Methods and Overriding -
Explanations For Triple Class (cont.)

• Using the method from the previous slide, the code segment

Triple t1 = new Triple(10, 70, 30);
System.out.println(t1);
Triple t2 = new Triple(40, 50, 55);
System.out.println(t2);

Produces the following output:

Triple[10, 70, 30]
Triple[40, 50, 55]

• Notice that the name of the class is displayed as part of the
representation. This is a common practice in overridden methods to
provide debugging information.

COP 3330: Introduction To Classes Page 40 © Mark Llewellyn

Inherited Methods and Overriding -
Explanations For Triple Class (cont.)

• If a class does not override toString(), then
the inherited method is used to produce its string
representations.

• Object method toString() returns a string
consisting of the class name appended with a
character ‘@’ and the hash code of the object.
Such information is not particularly useful in most
programming contexts.

COP 3330: Introduction To Classes Page 41 © Mark Llewellyn

Inherited Methods and Overriding -
Explanations For Triple Class (cont.)

• There are two other methods in class Triple that are overrides of
methods inherited from the class Object. They are clone() and
equals().

• Method clone() returns a new Triple object that is a duplicate of
the current object.

//clone() – duplicate facilitator
public Object clone() {

int a = getValue(1);
int b = getValue(2);
int c = getValue(3);
return new Triple(a, b, c);

}

• Because it is an override, the method has the return type of Object,
which is the return type of the clone() method defined by the class
Object.

COP 3330: Introduction To Classes Page 42 © Mark Llewellyn

Inherited Methods and Overriding -
Explanations For Triple Class (cont.)

• Creating a Triple clone is straightforward.

– First variables a, b, and c are initialized with the attribute values of the
Triple object that invoked method clone().

– The return value is produced by creating a new Triple object with
attribute values a, b, and c.

• The following code segment will use the clone() method to
initialize variable t2.

Triple t1 = new Triple(12, 14, 16);
Triple t2 = (Triple) t1.clone();
System.out.println(“t1 = “ + t1);
System.out.println(“t2 = “ + t2);

• Although the Triple method clone() returns a Triple object, its
return type is Object. Therefore, the return value must be cast to
Triple to use that value appropriately.

COP 3330: Introduction To Classes Page 43 © Mark Llewellyn

Inherited Methods and Overriding -
Explanations For Triple Class (cont.)

• The Triple class definition also overrides the Object
class equals() method because the inherited
equals() method does not meet our purposes here.

• Consider the following code segment that defines Triple
variables t1 and t2 that reference similarly constructed
objects:

Triple t1 = new Triple(20, 30, 40);

Triple t2 = new Triple(20, 30, 40);

• The representations of t1 and t2 are shown on the next
slide.

COP 3330: Introduction To Classes Page 44 © Mark Llewellyn

Inherited Methods and Overriding -
Explanations For Triple Class (cont.)

• The inherited Object class equals() method reports if the two object
references are the same rather than reporting whether the referenced
objects have equivalent attributes.

• Thus, System.out.println(t1.equals(t2)); will return
false – variables t1 and t2 contain different references.

t1

t2

Triple
x1:20 x2:30 x3: 40

Triple
x1:20 x2:30 x3: 40

COP 3330: Introduction To Classes Page 45 © Mark Llewellyn

Inherited Methods and Overriding -
Explanations For Triple Class (cont.)

• Object method equals() is equivalent to the ==
operator. Both test whether the objects in question are in
fact the same object.

• The Triple implementation of equals() instead
determines whether its parameter is a Triple object with
attributes that are equivalent to the invoking Triple
object.

• The Triple implementation of the equals() method
follows the standard form of an equals() method.

COP 3330: Introduction To Classes Page 46 © Mark Llewellyn

Inherited Methods and Overriding -
Explanations For Triple Class (cont.)

//equals() – equal facilitator
public boolean equals(Object v) {

if (v instanceof Triple) {
int a1 = getValue(1);
int b1 = getValue(2);
int c1 = getValue(3);
Triple t = (Triple) v;
int a2 = t.getValue(1);
int b2 = t.getValue(2);
int c2 = t.getValue(3);
return (a1 == a2) && (b1 == b2) && (c1 == c2);

}
else {return false;}

}

• The implementation begins by testing whether its parameter v
references a Triple object. Operator instanceof returns true
when the type of the object referenced by the left hand operand is
either that of the right hand operand or derived from the right hand
operand; otherwise the operator returns false. [NOTE: The null
reference is never considered an instance of a class.]

COP 3330: Introduction To Classes Page 47 © Mark Llewellyn

Inherited Methods and Overriding -
Explanations For Triple Class (cont.)

• If v is not referencing a Triple object, then the test
expression evaluates to false and the else clause is
executed – returning false as the object cannot be equal to
the Triple object invoking the equals() method.

• If the test expression evaluates to true, then v is
referencing a non-null Triple object. As such, the
method can determine whether the corresponding attributes
of the two Triple objects match.

• Variables a1, b1, c1, a2, b2, and c2 represent
respectively the attributes of the object invoking the
equals() method and the Triple object referenced
by parameter v.

COP 3330: Introduction To Classes Page 48 © Mark Llewellyn

Inherited Methods and Overriding -
Explanations For Triple Class (cont.)

int a1 = getValue(1);
int b1 = getValue(2);
int c1 = getValue(3);
Triple t = (Triple) v;
int a2 = t.getValue(1);
int b2 = t.getValue(2);
int c2 = t.getValue(3);

• ? Why does the code define a variable t that is a cast of v?
– Although it must be the case at this point in the method that

parameter v references a Triple object (we’ve already tested for
this), Java still requires an explicit case to treat v as something
other than an Object.

– Therefore, the statement int a2 = v.getValue(1);
will not compile because the apparent type of the object referenced
by v is Object, which does not have a method getValue().

COP 3330: Introduction To Classes Page 49 © Mark Llewellyn

Inherited Methods and Overriding -
Explanations For Triple Class (cont.)

• Consider the following code segment:

Triple e = new Triple(4, 6, 10);
Triple f = new Triple(4, 6, 11);
Triple g = new Triple(4, 6, 10);
Triple h = new Triple(4, 5, 11);
boolean flag1 = e.equals(f);
boolean flag2 = e.equals(g);
boolean flag3 = g.equals(h);

• What are the values assigned to flag1, flag2, and
flag3 by this code? Try it before you go to the next
slide!

COP 3330: Introduction To Classes Page 50 © Mark Llewellyn

Inherited Methods and Overriding -
Explanations For Triple Class (cont.)

e

f

Triple
x1:4 x2:6 x3: 10

Triple
x1:4 x2:6 x3: 11

g

h

Triple
x1:4 x2:6 x3: 10

Triple
x1:4 x2:5 x3: 11

COP 3330: Introduction To Classes Page 51 © Mark Llewellyn

Inherited Methods and Overriding -
Explanations For Triple Class (cont.)

flag1 false flag2 flag3true false

The objects referred to by e and f are different because their
x3 attributes are different (10 ≠ 11). The objects referred to
by e and g are equivalent because the corresponding
attribute values are the same. The objects referred to by g
and h are different because their x2 attributes are different (6
≠ 5).

COP 3330: Introduction To Classes Page 52 © Mark Llewellyn

COP 3330: Introduction To Classes Page 53 © Mark Llewellyn

COP 3330: Introduction To Classes Page 54 © Mark Llewellyn

